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The next 25 minutes of your life
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1. Why user-defined software stacks will end your suffering

2. But only if you use containers

3. Use Charliecloud and all your wildest dreams will come true



Some people need different software
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Default software stacks are good at specific things.
– in the case of HPC, it’s MPI-based simulation codes

What if your thing is different?
– non-MPI simulations
– data analytics and machine learning
– epic build process

Admins will install software for you.
– BUT only if there’s enough demand
– unusual needs go unmet
– are you crackpot or innovative?



Solution: User-defined software stacks
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BYOS (bring your own software)
– Let users install software of their choice
– ... up to and including a complete Linux distribution
– ... and run this image on compute resources they don’t own.



Why User-Defined Software Stacks (UDSS)?
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Advantages
– software dependencies: numerous, unusual, older, newer, internet ...
– portability of environments: e.g., across dev/test/small/large ...
– consistent environments: validated, standardized, archival ...
– usability
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Advantages
– software dependencies: numerous, unusual, older, newer, internet ...
– portability of environments: e.g., across dev/test/small/large ...
– consistent environments: validated, standardized, archival ...
– usability

Disadvantages (possibly)
– missing functionality: HSN, accelerators, file systems
– performance: many opportunities for overhead

Design goals
1. Standard, reproducible workflow
2. Work well on existing resources
3. Be very simple



Design goals
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1. Standard, reproducible workflow
– in contrast with “tinker ’til it’s ready, then freeze”
– standard ⟹ reduce training/devel costs, increase skill portability
– reproducible ⇒ creation of images is easier & more robust

2. Work well on existing resources
– HPC centers are very good at what they do
– let’s not re-implement and re-optimize

resource management: solved (Slurm, Moab, Torque, PBS, etc.)
file systems: solved (Lustre, Panasas, GPFS)
high-speed interconnect: solved (InfiniBand, OPA)

3. Be very simple
– save costs: development, debugging, security, usability
– UNIX philosophy: “make each program do one thing well”



UDSS Options
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Container implementations
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Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)
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Full-featured
– image building
– image management

storage, caching, tagging, signing
– orchestration
– storage management
– runtime setup

e.g., default command/script, inetd-alike
– stateful containers
– supervisor daemon(s)

Lightweight
– few features
– given an image, run it

Conclusion: Lightweight implementations are a better choice
for HPC centers

– most important cloud-like flexibility
– don’t compromise existing tools & strengths of HPC centers

But … some of those other features are important

systemd-nspawn [???]
NsJail [???]

Features are useful, but drawbacks…
1. code size
2. support burden
3. privileged & trusted operationsunshare(1)

systemd-nspawn [???]
NsJail [???]
Charliecloud Lower-cost deployment



Container ingredients to mix-n-match
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1. Linux namespaces
– mount: filesystem tree and mounts
– PID: process IDs
– UTS: host name & domain name
– network: all other network stuff
– IPC: System V and POSIX
– user: UID/GID/capabilities
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Charliecloud’s hybrid approach
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1. Image building & sharing goes in a sandbox
– safe place for users to be root: user workstation or virtual machine
– use Docker for image building

or anything else that can produce a filesystem tree
debootstrap(8), yum --installroot, etc.

– wrap Docker for image management
ch-docker2tar
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1. Image building & sharing goes in a sandbox
– safe place for users to be root: user workstation or virtual machine
– use Docker for image building

or anything else that can produce a filesystem tree
debootstrap(8), yum --installroot, etc.

– wrap Docker for image management
ch-docker2tar

2. Run images with our own unprivileged runtime
– mount & user namespaces only

requires new-ish kernel
most distros have the right kernel (Fedora in 2015, Ubuntu Xenial in 2016)
Cray UP04 has it
RHEL/CentOS 7 can install via ElRepo (or enable on kernel command line in 7.4)

– it’s a user program!!!
– admins don’t need to do anything



Basic workflow
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step
where

privileged?
sandbox production

1. Build Docker/etc. image ✓ maybe

2. Dump image to tarball ✓ maybe

3. Copy tarball to where you want to run ✓ ✓ no

4. Unpack tarball ✓ no

5. Configure your stuff (sometimes) ✓ no

6. Run your commands in container ✓ no



Performance e.g.: CoMD and VPIC (32 nodes)
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Charliecloud vs. the design goals
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1. Standard, reproducible workflow
– in contrast with “tinker ’til it’s ready, then freeze”
– standard ⟹ reduce training/devel costs, increase skill portability
– reproducible ⇒ creation of images is easier & more robust

2. Work well on existing resources
– HPC centers are very good at what they do
– let’s not re-implement and re-optimize

resource management: solved (Slurm, Moab, Torque, PBS, etc.)
file systems: solved (Lustre, Panasas, GPFS)
high-speed interconnect: solved (InfiniBand, OPA)

3. Be very simple
– save costs: development, debugging, security, usability
– UNIX philosophy: “make each program do one thing well”

✓

✓

✓



Charliecloud status
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1. Available now on some LANL clusters
– passes tests on Crays
– Woodchuck (IC) now, Fog (ASC) very soon

2. Installable now on any Linux box
– newer kernel needed (roughly 4.4+)
– including cloud instances

3. Instructions for pre-installed VirtualBox image
– no root needed
– Mac, Windows, Linux, Solaris

4. Packages available on openSUSE Build Service (community)
– CentOS 7, Debian 9.0, Xubuntu 16.04 & 17.10

5. PR for HTCondor integration (community)



Charliecloud resources
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;login: article (USENIX magazine)
– “Linux containers for fun and profit in HPC”
– https://www.usenix.org/publications/login/fall2017/priedhorsky

Supercomputing 2017
– “Charliecloud: Unprivileged containers for UDSS in HPC”

Documentation
– https://hpc.github.io/charliecloud
– includes detailed tutorials

Source code
– https://github.com/hpc/charliecloud

Reid Priedhorsky, Tim Randles / {reidpr,trandles}@lanl.gov

Charliecloud: Lightweight unprivileged containers for UDSS in HPC


